Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs (2503.12181v3)

Published 15 Mar 2025 in cs.AI and cs.RO

Abstract: Autonomous systems that operate in continuous state, action, and observation spaces require planning and reasoning under uncertainty. Existing online planning methods for such POMDPs are almost exclusively sample-based, yet they forego the power of high-dimensional gradient optimization as combining it into Monte Carlo Tree Search (MCTS) has proved difficult, especially in non-parametric settings. We close this gap with three contributions. First, we derive a novel action-gradient theorem for both MDPs and POMDPs in terms of transition likelihoods, making gradient information accessible during tree search. Second, we introduce the Multiple Importance Sampling (MIS) tree, that re-uses samples for changing action branches, yielding consistent value estimates that enable in-search gradient steps. Third, we derive exact transition probability computation via the area formula for smooth generative models common in physical domains, a result of independent interest. These elements combine into Action-Gradient Monte Carlo Tree Search (AGMCTS), the first planner to blend non-parametric particle search with online gradient refinement in POMDPs. Across several challenging continuous MDP and POMDP benchmarks, AGMCTS outperforms widely-used sample-only solvers in solution quality.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.