Bridging the LLM Accessibility Divide? Performance, Fairness, and Cost of Closed versus Open LLMs for Automated Essay Scoring
Abstract: Closed LLMs such as GPT-4 have set state-of-the-art results across a number of NLP tasks and have become central to NLP and ML-driven solutions. Closed LLMs' performance and wide adoption has sparked considerable debate about their accessibility in terms of availability, cost, and transparency. In this study, we perform a rigorous comparative analysis of nine leading LLMs, spanning closed, open, and open-source LLM ecosystems, across text assessment and generation tasks related to automated essay scoring. Our findings reveal that for few-shot learning-based assessment of human generated essays, open LLMs such as Llama 3 and Qwen2.5 perform comparably to GPT-4 in terms of predictive performance, with no significant differences in disparate impact scores when considering age- or race-related fairness. Moreover, Llama 3 offers a substantial cost advantage, being up to 37 times more cost-efficient than GPT-4. For generative tasks, we find that essays generated by top open LLMs are comparable to closed LLMs in terms of their semantic composition/embeddings and ML assessed scores. Our findings challenge the dominance of closed LLMs and highlight the democratizing potential of open LLMs, suggesting they can effectively bridge accessibility divides while maintaining competitive performance and fairness.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.