Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SPECTra: Scalable Multi-Agent Reinforcement Learning with Permutation-Free Networks (2503.11726v1)

Published 14 Mar 2025 in cs.LG and cs.AI

Abstract: In cooperative multi-agent reinforcement learning (MARL), the permutation problem where the state space grows exponentially with the number of agents reduces sample efficiency. Additionally, many existing architectures struggle with scalability, relying on a fixed structure tied to a specific number of agents, limiting their applicability to environments with a variable number of entities. While approaches such as graph neural networks (GNNs) and self-attention mechanisms have progressed in addressing these challenges, they have significant limitations as dense GNNs and self-attention mechanisms incur high computational costs. To overcome these limitations, we propose a novel agent network and a non-linear mixing network that ensure permutation-equivariance and scalability, allowing them to generalize to environments with various numbers of agents. Our agent network significantly reduces computational complexity, and our scalable hypernetwork enables efficient weight generation for non-linear mixing. Additionally, we introduce curriculum learning to improve training efficiency. Experiments on SMACv2 and Google Research Football (GRF) demonstrate that our approach achieves superior learning performance compared to existing methods. By addressing both permutation-invariance and scalability in MARL, our work provides a more efficient and adaptable framework for cooperative MARL. Our code is available at https://github.com/funny-rl/SPECTra.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub