Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ASMA-Tune: Unlocking LLMs' Assembly Code Comprehension via Structural-Semantic Instruction Tuning (2503.11617v2)

Published 14 Mar 2025 in cs.SE and cs.AI

Abstract: Assembly code analysis and comprehension play critical roles in applications like reverse engineering, yet they face substantial challenges due to low information density and a lack of explicit syntactic structures. While traditional masked LLMing (MLM) approaches do not explicitly focus on natural language interaction, emerging decoder-focused LLMs demonstrate partial success in binary analysis yet remain underexplored for holistic comprehension. We present Assembly Augmented Tuning, an end-to-end structural-semantic instruction tuning framework that synergizes encoder architecture with decoder-based LLMs through a projector module, where the assembly encoder extracts hardware-level structural features, the projector bridges representations with the semantic space, and the instruction-tuned LLM preserves natural language capabilities. Experimental results demonstrate three key advantages: (1) State-of-the-art performance in assembly comprehension with +39.7% Recall@1 and +17.8% MRR improvements over GPT-4-Turbo, (2) Consistent enhancements across base models (24.6-107.4% Recall@1 and 15.2-106.3% MRR on Qwen2.5-Coder, Deepseek-Coder and CodeLlama variants), and (3) Superior instruction-following capabilities (41.5%-118% improvements) with controlled code generation degradation (-8.9% to -35% across architectures).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.