Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Superconvergent Discontinuous Galerkin Method for the Scalar Teukolsky Equation on Hyperboloidal Domains: Efficient Waveform and Self-Force Computation (2503.11523v1)

Published 14 Mar 2025 in gr-qc, cs.NA, and math.NA

Abstract: The long-time evolution of extreme mass-ratio inspiral systems requires minimal phase and dispersion errors to accurately compute far-field waveforms, while high accuracy is essential near the smaller black hole (modeled as a Dirac delta distribution) for self-force computations. Spectrally accurate methods, such as nodal discontinuous Galerkin (DG) methods, are well suited for these tasks. Their numerical errors typically decrease as $\propto (\Delta x){N+1}$, where $\Delta x$ is the subdomain size and $N$ is the polynomial degree of the approximation. However, certain DG schemes exhibit superconvergence, where truncation, phase, and dispersion errors can decrease as fast as $\propto (\Delta x){2N+1}$. Superconvergent numerical solvers are, by construction, extremely efficient and accurate. We theoretically demonstrate that our DG scheme for the scalar Teukolsky equation with a distributional source is superconvergent, and this property is retained when combined with the hyperboloidal layer compactification technique. This ensures that waveforms, total energy and angular-momentum fluxes, and self-force computations benefit from superconvergence. We empirically verify this behavior across a family of hyperboloidal layer compactifications with varying degrees of smoothness. Additionally, we show that self-force quantities for circular orbits, computed at the point particle's location, also exhibit a certain degree of superconvergence. Our results underscore the potential benefits of numerical superconvergence for efficient and accurate gravitational waveform simulations based on DG methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: