Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Financial Fraud Detection with Entropy Computing (2503.11273v1)

Published 14 Mar 2025 in cs.LG, cs.AI, physics.optics, and quant-ph

Abstract: We introduce CVQBoost, a novel classification algorithm that leverages early hardware implementing Quantum Computing Inc's Entropy Quantum Computing (EQC) paradigm, Dirac-3 [Nguyen et. al. arXiv:2407.04512]. We apply CVQBoost to a fraud detection test case and benchmark its performance against XGBoost, a widely utilized ML method. Running on Dirac-3, CVQBoost demonstrates a significant runtime advantage over XGBoost, which we evaluate on high-performance hardware comprising up to 48 CPUs and four NVIDIA L4 GPUs using the RAPIDS AI framework. Our results show that CVQBoost maintains competitive accuracy (measured by AUC) while significantly reducing training time, particularly as dataset size and feature complexity increase. To assess scalability, we extend our study to large synthetic datasets ranging from 1M to 70M samples, demonstrating that CVQBoost on Dirac-3 is well-suited for large-scale classification tasks. These findings position CVQBoost as a promising alternative to gradient boosting methods, offering superior scalability and efficiency for high-dimensional ML applications such as fraud detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com