Papers
Topics
Authors
Recent
2000 character limit reached

Clustering Items through Bandit Feedback: Finding the Right Feature out of Many (2503.11209v2)

Published 14 Mar 2025 in stat.ML and cs.LG

Abstract: We study the problem of clustering a set of items based on bandit feedback. Each of the $n$ items is characterized by a feature vector, with a possibly large dimension $d$. The items are partitioned into two unknown groups such that items within the same group share the same feature vector. We consider a sequential and adaptive setting in which, at each round, the learner selects one item and one feature, then observes a noisy evaluation of the item's feature. The learner's objective is to recover the correct partition of the items, while keeping the number of observations as small as possible. We provide an algorithm which relies on finding a relevant feature for the clustering task, leveraging the Sequential Halving algorithm. With probability at least $1-\delta$, we obtain an accurate recovery of the partition and derive an upper bound on the budget required. Furthermore, we derive an instance-dependent lower bound, which is tight in some relevant cases.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.