Papers
Topics
Authors
Recent
2000 character limit reached

Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation (2503.11183v1)

Published 14 Mar 2025 in cs.CV

Abstract: Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation, which aims to segment objects based on a given text description, with great significance in practical application. Previous studies fuse visual and linguistic modalities by explicit feature interaction, which fail to effectively excavate useful multimodal information from dual-branch encoder. In this letter, we design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities. We propose a correlation fusion module (CFM) to enhance multi-scale visual features by introducing adaptively noise in transformer, and integrate cross-modal aware features. In addition, MAFN employs multi-scale refinement convolution (MSRC) to adapt to the various orientations of objects at different scales to boost their representation ability to enhances segmentation accuracy. Extensive experiments have shown that MAFN is significantly more effective than the state of the art on RRSIS-D datasets. The source code is available at https://github.com/Roaxy/MAFN.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com