Fixed-Point RNNs: From Diagonal to Dense in a Few Iterations (2503.10799v1)
Abstract: Linear recurrent neural networks (RNNs) and state-space models (SSMs) such as Mamba have become promising alternatives to softmax-attention as sequence mixing layers in Transformer architectures. Current models, however, do not exhibit the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e. diagonal) sequence mixing. In this paper, we propose to compute a dense linear RNN as the fixed-point of a parallelizable diagonal linear RNN in a single layer. We explore mechanisms to improve its memory and state-tracking abilities in practice, and achieve state-of-the-art results on the commonly used toy tasks $A_5$, $S_5$, copying, and modular arithmetics. We hope our results will open new avenues to more expressive and efficient sequence mixers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.