Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SortingEnv: An Extendable RL-Environment for an Industrial Sorting Process (2503.10466v1)

Published 13 Mar 2025 in cs.LG

Abstract: We present a novel reinforcement learning (RL) environment designed to both optimize industrial sorting systems and study agent behavior in evolving spaces. In simulating material flow within a sorting process our environment follows the idea of a digital twin, with operational parameters like belt speed and occupancy level. To reflect real-world challenges, we integrate common upgrades to industrial setups, like new sensors or advanced machinery. It thus includes two variants: a basic version focusing on discrete belt speed adjustments and an advanced version introducing multiple sorting modes and enhanced material composition observations. We detail the observation spaces, state update mechanisms, and reward functions for both environments. We further evaluate the efficiency of common RL algorithms like Proximal Policy Optimization (PPO), Deep-Q-Networks (DQN), and Advantage Actor Critic (A2C) in comparison to a classical rule-based agent (RBA). This framework not only aids in optimizing industrial processes but also provides a foundation for studying agent behavior and transferability in evolving environments, offering insights into model performance and practical implications for real-world RL applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube