Optimal Estimation for Continuous-Time Nonlinear Systems Using State-Dependent Riccati Equation (SDRE) (2503.10442v1)
Abstract: This paper introduces a unified approach for state estimation and control of nonlinear dynamic systems, employing the State-Dependent Riccati Equation (SDRE) framework. The proposed approach naturally extends classical linear quadratic Gaussian (LQG) methods into nonlinear scenarios, avoiding linearization by using state-dependent coefficient (SDC) matrices. An SDRE-based Kalman filter (SDRE-KF) is integrated within an SDRE-based control structure, providing a coherent and intuitive strategy for nonlinear system analysis and control design. To evaluate the effectiveness and robustness of the proposed methodology, comparative simulations are conducted on two benchmark nonlinear systems: a simple pendulum and a Van der Pol oscillator. Results demonstrate that the SDRE-KF achieves comparable or superior estimation accuracy compared to traditional methods, including the Extended Kalman Filter (EKF) and Particle Filter (PF). These findings underline the potential of the unified SDRE-based approach as a viable alternative for nonlinear state estimation and control, providing valuable insights for both educational purposes and practical engineering applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.