Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Low-precision first-order method-based fix-and-propagate heuristics for large-scale mixed-integer linear optimization (2503.10344v1)

Published 12 Mar 2025 in math.OC

Abstract: We investigate the use of low-precision first-order methods (FOMs) within a fix-and-propagate (FP) framework for solving mixed-integer programming problems (MIPs). FOMs, using only matrix-vector products instead of matrix factorizations, are well suited for GPU acceleration and have recently gained more attention for their application to large-scale linear programming problems (LPs). We employ PDLP, a variant of the Primal-Dual Hybrid Gradient (PDHG) method specialized to LP problems, to solve the LP-relaxation of our MIPs to low accuracy. This solution is used to motivate fixings within our fix-and-propagate framework. We implemented four different FP variants using primal and dual LP solution information. We evaluate the performance of our heuristics on MIPLIB 2017, showcasing that the low-accuracy LP solution produced by the FOM does not lead to a loss in quality of the FP heuristic solutions when compared to a high-accuracy interior-point method LP solution. Further, we use our FP framework to produce high-accuracy solutions for large-scale (up to 243 million non-zeros and 8 million decision variables) unit-commitment energy-system optimization models created with the modeling framework REMix. For the largest problems, we can generate solutions with under 2% primal-dual gap in less than 4 hours, whereas commercial solvers cannot generate feasible solutions within two days of runtime. This study represents the first successful application of FOMs in large-scale mixed-integer optimization, demonstrating their efficacy and establishing a foundation for future research in this domain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: