Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

FDCT: Frequency-Aware Decomposition and Cross-Modal Token-Alignment for Multi-Sensor Target Classification (2503.09873v1)

Published 12 Mar 2025 in cs.CV

Abstract: In automatic target recognition (ATR) systems, sensors may fail to capture discriminative, fine-grained detail features due to environmental conditions, noise created by CMOS chips, occlusion, parallaxes, and sensor misalignment. Therefore, multi-sensor image fusion is an effective choice to overcome these constraints. However, multi-modal image sensors are heterogeneous and have domain and granularity gaps. In addition, the multi-sensor images can be misaligned due to intricate background clutters, fluctuating illumination conditions, and uncontrolled sensor settings. In this paper, to overcome these issues, we decompose, align, and fuse multiple image sensor data for target classification. We extract the domain-specific and domain-invariant features from each sensor data. We propose to develop a shared unified discrete token (UDT) space between sensors to reduce the domain and granularity gaps. Additionally, we develop an alignment module to overcome the misalignment between multi-sensors and emphasize the discriminative representation of the UDT space. In the alignment module, we introduce sparsity constraints to provide a better cross-modal representation of the UDT space and robustness against various sensor settings. We achieve superior classification performance compared to single-modality classifiers and several state-of-the-art multi-modal fusion algorithms on four multi-sensor ATR datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.