Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba (2503.09509v1)

Published 12 Mar 2025 in cs.CV

Abstract: Visual Mamba networks (ViMs) extend the selective space state model (Mamba) to various vision tasks and demonstrate significant potential. Vector quantization (VQ), on the other hand, decomposes network weights into codebooks and assignments, significantly reducing memory usage and computational latency to enable ViMs deployment on edge devices. Although existing VQ methods have achieved extremely low-bit quantization (e.g., 3-bit, 2-bit, and 1-bit) in convolutional neural networks and Transformer-based networks, directly applying these methods to ViMs results in unsatisfactory accuracy. We identify several key challenges: 1) The weights of Mamba-based blocks in ViMs contain numerous outliers, significantly amplifying quantization errors. 2) When applied to ViMs, the latest VQ methods suffer from excessive memory consumption, lengthy calibration procedures, and suboptimal performance in the search for optimal codewords. In this paper, we propose ViM-VQ, an efficient post-training vector quantization method tailored for ViMs. ViM-VQ consists of two innovative components: 1) a fast convex combination optimization algorithm that efficiently updates both the convex combinations and the convex hulls to search for optimal codewords, and 2) an incremental vector quantization strategy that incrementally confirms optimal codewords to mitigate truncation errors. Experimental results demonstrate that ViM-VQ achieves state-of-the-art performance in low-bit quantization across various visual tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube