Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Retrieval Augmented Generative LLMs For Automated Metadata Description Generation to Enhance Data Catalogs (2503.09003v1)

Published 12 Mar 2025 in cs.IR and cs.CL

Abstract: Data catalogs serve as repositories for organizing and accessing diverse collection of data assets, but their effectiveness hinges on the ease with which business users can look-up relevant content. Unfortunately, many data catalogs within organizations suffer from limited searchability due to inadequate metadata like asset descriptions. Hence, there is a need of content generation solution to enrich and curate metadata in a scalable way. This paper explores the challenges associated with metadata creation and proposes a unique prompt enrichment idea of leveraging existing metadata content using retrieval based few-shot technique tied with generative LLMs (LLM). The literature also considers finetuning an LLM on existing content and studies the behavior of few-shot pretrained LLM (Llama, GPT3.5) vis-`a-vis few-shot finetuned LLM (Llama2-7b) by evaluating their performance based on accuracy, factual grounding, and toxicity. Our preliminary results exhibit more than 80% Rouge-1 F1 for the generated content. This implied 87%- 88% of instances accepted as is or curated with minor edits by data stewards. By automatically generating descriptions for tables and columns in most accurate way, the research attempts to provide an overall framework for enterprises to effectively scale metadata curation and enrich its data catalog thereby vastly improving the data catalog searchability and overall usability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.