Leveraging Retrieval Augmented Generative LLMs For Automated Metadata Description Generation to Enhance Data Catalogs (2503.09003v1)
Abstract: Data catalogs serve as repositories for organizing and accessing diverse collection of data assets, but their effectiveness hinges on the ease with which business users can look-up relevant content. Unfortunately, many data catalogs within organizations suffer from limited searchability due to inadequate metadata like asset descriptions. Hence, there is a need of content generation solution to enrich and curate metadata in a scalable way. This paper explores the challenges associated with metadata creation and proposes a unique prompt enrichment idea of leveraging existing metadata content using retrieval based few-shot technique tied with generative LLMs (LLM). The literature also considers finetuning an LLM on existing content and studies the behavior of few-shot pretrained LLM (Llama, GPT3.5) vis-`a-vis few-shot finetuned LLM (Llama2-7b) by evaluating their performance based on accuracy, factual grounding, and toxicity. Our preliminary results exhibit more than 80% Rouge-1 F1 for the generated content. This implied 87%- 88% of instances accepted as is or curated with minor edits by data stewards. By automatically generating descriptions for tables and columns in most accurate way, the research attempts to provide an overall framework for enterprises to effectively scale metadata curation and enrich its data catalog thereby vastly improving the data catalog searchability and overall usability.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.