Dynamically optimal portfolios for monotone mean--variance preferences (2503.08272v1)
Abstract: Monotone mean-variance (MMV) utility is the minimal modification of the classical Markowitz utility that respects rational ordering of investment opportunities. This paper provides, for the first time, a complete characterization of optimal dynamic portfolio choice for the MMV utility in asset price models with independent returns. The task is performed under minimal assumptions, weaker than the existence of an equivalent martingale measure and with no restrictions on the moments of asset returns. We interpret the maximal MMV utility in terms of the monotone Sharpe ratio (MSR) and show that the global squared MSR arises as the nominal yield from continuously compounding at the rate equal to the maximal local squared MSR. The paper gives simple necessary and sufficient conditions for mean-variance (MV) efficient portfolios to be MMV efficient. Several illustrative examples contrasting the MV and MMV criteria are provided.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.