Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Elastic Motion Policy: An Adaptive Dynamical System for Robust and Efficient One-Shot Imitation Learning (2503.08029v1)

Published 11 Mar 2025 in cs.RO, cs.SY, and eess.SY

Abstract: Behavior cloning (BC) has become a staple imitation learning paradigm in robotics due to its ease of teaching robots complex skills directly from expert demonstrations. However, BC suffers from an inherent generalization issue. To solve this, the status quo solution is to gather more data. Yet, regardless of how much training data is available, out-of-distribution performance is still sub-par, lacks any formal guarantee of convergence and success, and is incapable of allowing and recovering from physical interactions with humans. These are critical flaws when robots are deployed in ever-changing human-centric environments. Thus, we propose Elastic Motion Policy (EMP), a one-shot imitation learning framework that allows robots to adjust their behavior based on the scene change while respecting the task specification. Trained from a single demonstration, EMP follows the dynamical systems paradigm where motion planning and control are governed by first-order differential equations with convergence guarantees. We leverage Laplacian editing in full end-effector space, $\mathbb{R}3\times SO(3)$, and online convex learning of Lyapunov functions, to adapt EMP online to new contexts, avoiding the need to collect new demonstrations. We extensively validate our framework in real robot experiments, demonstrating its robust and efficient performance in dynamic environments, with obstacle avoidance and multi-step task capabilities. Project Website: https://elastic-motion-policy.github.io/EMP/

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube