Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic PET Image Reconstruction via Non-negative INR Factorization (2503.08025v2)

Published 11 Mar 2025 in cs.CV

Abstract: The reconstruction of dynamic positron emission tomography (PET) images from noisy projection data is a significant but challenging problem. In this paper, we introduce an unsupervised learning approach, Non-negative Implicit Neural Representation Factorization (\texttt{NINRF}), based on low rank matrix factorization of unknown images and employing neural networks to represent both coefficients and bases. Mathematically, we demonstrate that if a sequence of dynamic PET images satisfies a generalized non-negative low-rank property, it can be decomposed into a set of non-negative continuous functions varying in the temporal-spatial domain. This bridges the well-established non-negative matrix factorization (NMF) with continuous functions and we propose using implicit neural representations (INRs) to connect matrix with continuous functions. The neural network parameters are obtained by minimizing the KL divergence, with additional sparsity regularization on coefficients and bases. Extensive experiments on dynamic PET reconstruction with Poisson noise demonstrate the effectiveness of the proposed method compared to other methods, while giving continuous representations for object's detailed geometric features and regional concentration variation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.