Papers
Topics
Authors
Recent
2000 character limit reached

A Study to Evaluate the Impact of LoRA Fine-tuning on the Performance of Non-functional Requirements Classification (2503.07927v1)

Published 11 Mar 2025 in cs.SE

Abstract: Classifying Non-Functional Requirements (NFRs) in software development life cycle is critical. Inspired by the theory of transfer learning, researchers apply powerful pre-trained models for NFR classification. However, full fine-tuning by updating all parameters of the pre-trained models is often impractical due to the huge number of parameters involved (e.g., 175 billion trainable parameters in GPT-3). In this paper, we apply Low-Rank Adaptation (LoRA) fine-tuning approach into NFR classification based on prompt-based learning to investigate its impact. The experiments show that LoRA can significantly reduce the execution cost (up to 68% reduction) without too much loss of effectiveness in classification (only 2%-3% decrease). The results show that LoRA can be practical in more complicated classification cases with larger dataset and pre-trained models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.