Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services (2503.07784v1)

Published 10 Mar 2025 in cs.LG and cs.AI

Abstract: Explainable AI is a crucial component for edge services, as it ensures reliable decision making based on complex AI models. Surrogate models are a prominent approach of XAI where human-interpretable models, such as a linear regression model, are trained to approximate a complex (black-box) model's predictions. This paper delves into the balance between the predictive accuracy of complex AI models and their approximation by surrogate ones, advocating that both these models benefit from being learned simultaneously. We derive a joint (bi-level) training scheme for both models and we introduce a new algorithm based on multi-objective optimization (MOO) to simultaneously minimize both the complex model's prediction error and the error between its outputs and those of the surrogate. Our approach leads to improvements that exceed 99% in the approximation of the black-box model through the surrogate one, as measured by the metric of Fidelity, for a compromise of less than 3% absolute reduction in the black-box model's predictive accuracy, compared to single-task and multi-task learning baselines. By improving Fidelity, we can derive more trustworthy explanations of the complex model's outcomes from the surrogate, enabling reliable AI applications for intelligent services at the network edge.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.