Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Counting with the quantum alternating operator ansatz (2503.07720v1)

Published 10 Mar 2025 in quant-ph, cond-mat.stat-mech, and cs.DS

Abstract: We introduce a variational algorithm based on the quantum alternating operator ansatz (QAOA) for the approximate solution of computationally hard counting problems. Our algorithm, dubbed VQCount, is based on the equivalence between random sampling and approximate counting and employs QAOA as a solution sampler. We first prove that VQCount improves upon previous work by reducing exponentially the number of samples needed to obtain an approximation within a multiplicative factor of the exact count. Using tensor network simulations, we then study the typical performance of VQCount with shallow circuits on synthetic instances of two #P-hard problems, positive #NAE3SAT and positive #1-in-3SAT. We employ the original quantum approximate optimization algorithm version of QAOA, as well as the Grover-mixer variant which guarantees a uniform solution probability distribution. We observe a tradeoff between QAOA success probability and sampling uniformity, which we exploit to achieve an exponential gain in efficiency over naive rejection sampling. Our results highlight the potential and limitations of variational algorithms for approximate counting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.