Papers
Topics
Authors
Recent
2000 character limit reached

dnamite: A Python Package for Neural Additive Models (2503.07642v1)

Published 6 Mar 2025 in cs.LG and stat.ML

Abstract: Additive models offer accurate and interpretable predictions for tabular data, a critical tool for statistical modeling. Recent advances in Neural Additive Models (NAMs) allow these models to handle complex machine learning tasks, including feature selection and survival analysis, on large-scale data. This paper introduces dnamite, a Python package that implements NAMs for these advanced applications. dnamite provides a scikit-learn style interface to train regression, classification, and survival analysis NAMs, with built-in support for feature selection. We describe the methodology underlying dnamite, its design principles, and its implementation. Through an application to the MIMIC III clinical dataset, we demonstrate the utility of dnamite in a real-world setting where feature selection and survival analysis are both important. The package is publicly available via pip and documented at dnamite.readthedocs.io.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: