NeuroChat: A Neuroadaptive AI Chatbot for Customizing Learning Experiences (2503.07599v1)
Abstract: Generative AI is transforming education by enabling personalized, on-demand learning experiences. However, AI tutors lack the ability to assess a learner's cognitive state in real time, limiting their adaptability. Meanwhile, electroencephalography (EEG)-based neuroadaptive systems have successfully enhanced engagement by dynamically adjusting learning content. This paper presents NeuroChat, a proof-of-concept neuroadaptive AI tutor that integrates real-time EEG-based engagement tracking with generative AI. NeuroChat continuously monitors a learner's cognitive engagement and dynamically adjusts content complexity, response style, and pacing using a closed-loop system. We evaluate this approach in a pilot study (n=24), comparing NeuroChat to a standard LLM-based chatbot. Results indicate that NeuroChat enhances cognitive and subjective engagement but does not show an immediate effect on learning outcomes. These findings demonstrate the feasibility of real-time cognitive feedback in LLMs, highlighting new directions for adaptive learning, AI tutoring, and human-AI interaction.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.