Detection Avoidance Techniques for Large Language Models (2503.07595v1)
Abstract: The increasing popularity of LLMs has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.