Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AnomalyPainter: Vision-Language-Diffusion Synergy for Zero-Shot Realistic and Diverse Industrial Anomaly Synthesis (2503.07253v2)

Published 10 Mar 2025 in cs.CV

Abstract: While existing anomaly synthesis methods have made remarkable progress, achieving both realism and diversity in synthesis remains a major obstacle. To address this, we propose AnomalyPainter, a zero-shot framework that breaks the diversity-realism trade-off dilemma through synergizing Vision Language Large Model (VLLM), Latent Diffusion Model (LDM), and our newly introduced texture library Tex-9K. Tex-9K is a professional texture library containing 75 categories and 8,792 texture assets crafted for diverse anomaly synthesis. Leveraging VLLM's general knowledge, reasonable anomaly text descriptions are generated for each industrial object and matched with relevant diverse textures from Tex-9K. These textures then guide the LDM via ControlNet to paint on normal images. Furthermore, we introduce Texture-Aware Latent Init to stabilize the natural-image-trained ControlNet for industrial images. Extensive experiments show that AnomalyPainter outperforms existing methods in realism, diversity, and generalization, achieving superior downstream performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.