Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Semi-Supervised Medical Image Segmentation via Knowledge Mining from Large Models (2503.06816v1)

Published 10 Mar 2025 in eess.IV, cs.AI, and cs.CV

Abstract: Large-scale vision models like SAM have extensive visual knowledge, yet their general nature and computational demands limit their use in specialized tasks like medical image segmentation. In contrast, task-specific models such as U-Net++ often underperform due to sparse labeled data. This study introduces a strategic knowledge mining method that leverages SAM's broad understanding to boost the performance of small, locally hosted deep learning models. In our approach, we trained a U-Net++ model on a limited labeled dataset and extend its capabilities by converting SAM's output infered on unlabeled images into prompts. This process not only harnesses SAM's generalized visual knowledge but also iteratively improves SAM's prediction to cater specialized medical segmentation tasks via U-Net++. The mined knowledge, serving as "pseudo labels", enriches the training dataset, enabling the fine-tuning of the local network. Applied to the Kvasir SEG and COVID-QU-Ex datasets which consist of gastrointestinal polyp and lung X-ray images respectively, our proposed method consistently enhanced the segmentation performance on Dice by 3% and 1% respectively over the baseline U-Net++ model, when the same amount of labelled data were used during training (75% and 50% of labelled data). Remarkably, our proposed method surpassed the baseline U-Net++ model even when the latter was trained exclusively on labeled data (100% of labelled data). These results underscore the potential of knowledge mining to overcome data limitations in specialized models by leveraging the broad, albeit general, knowledge of large-scale models like SAM, all while maintaining operational efficiency essential for clinical applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.