Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Does Acceleration Cause Hidden Instability in Vision Language Models? Uncovering Instance-Level Divergence Through a Large-Scale Empirical Study (2503.06794v3)

Published 9 Mar 2025 in cs.CV and cs.CL

Abstract: Vision-LLMs (VLMs) are powerful yet computationally intensive for widespread practical deployments. To address such challenge without costly re-training, post-training acceleration techniques like quantization and token reduction are extensively explored. However, current acceleration evaluations primarily target minimal overall performance degradation, overlooking a crucial question: does the accelerated model still give the same answers to the same questions as it did before acceleration? This is vital for stability-centered industrial applications where consistently correct answers for specific, known situations are paramount, such as in AI-based disease diagnosis. We systematically investigate this for accelerated VLMs, testing four leading models (LLaVA-1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL) with eight acceleration methods on ten multi-modal benchmarks. Our findings are stark: despite minimal aggregate performance drops, accelerated models changed original answers up to 20% of the time. Critically, up to 6.5% of these changes converted correct answers to incorrect. Input perturbations magnified these inconsistencies, and the trend is confirmed by case studies with the medical VLM LLaVA-Med. This research reveals a significant oversight in VLM acceleration, stressing an urgent need for instance-level stability checks to ensure trustworthy real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.