Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generative modelling with jump-diffusions (2503.06558v1)

Published 9 Mar 2025 in cs.LG and stat.ML

Abstract: Score-based diffusion models generate samples from an unknown target distribution using a time-reversed diffusion process. While such models represent state-of-the-art approaches in industrial applications such as artificial image generation, it has recently been noted that their performance can be further improved by considering injection noise with heavy tailed characteristics. Here, I present a generalization of generative diffusion processes to a wide class of non-Gaussian noise processes. I consider forward processes driven by standard Gaussian noise with super-imposed Poisson jumps representing a finite activity Levy process. The generative process is shown to be governed by a generalized score function that depends on the jump amplitude distribution. Both probability flow ODE and SDE formulations are derived using basic technical effort, and are implemented for jump amplitudes drawn from a multivariate Laplace distribution. Remarkably, for the problem of capturing a heavy-tailed target distribution, the jump-diffusion Laplace model outperforms models driven by alpha-stable noise despite not containing any heavy-tailed characteristics. The framework can be readily applied to other jump statistics that could further improve on the performance of standard diffusion models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 195 likes.