CtrTab: Tabular Data Synthesis with High-Dimensional and Limited Data (2503.06444v1)
Abstract: Diffusion-based tabular data synthesis models have yielded promising results. However, we observe that when the data dimensionality increases, existing models tend to degenerate and may perform even worse than simpler, non-diffusion-based models. This is because limited training samples in high-dimensional space often hinder generative models from capturing the distribution accurately. To address this issue, we propose CtrTab-a condition controlled diffusion model for tabular data synthesis-to improve the performance of diffusion-based generative models in high-dimensional, low-data scenarios. Through CtrTab, we inject samples with added Laplace noise as control signals to improve data diversity and show its resemblance to L2 regularization, which enhances model robustness. Experimental results across multiple datasets show that CtrTab outperforms state-of-the-art models, with performance gap in accuracy over 80% on average. Our source code will be released upon paper publication.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.