Papers
Topics
Authors
Recent
2000 character limit reached

CtrTab: Tabular Data Synthesis with High-Dimensional and Limited Data (2503.06444v1)

Published 9 Mar 2025 in cs.LG, cs.AI, and cs.DB

Abstract: Diffusion-based tabular data synthesis models have yielded promising results. However, we observe that when the data dimensionality increases, existing models tend to degenerate and may perform even worse than simpler, non-diffusion-based models. This is because limited training samples in high-dimensional space often hinder generative models from capturing the distribution accurately. To address this issue, we propose CtrTab-a condition controlled diffusion model for tabular data synthesis-to improve the performance of diffusion-based generative models in high-dimensional, low-data scenarios. Through CtrTab, we inject samples with added Laplace noise as control signals to improve data diversity and show its resemblance to L2 regularization, which enhances model robustness. Experimental results across multiple datasets show that CtrTab outperforms state-of-the-art models, with performance gap in accuracy over 80% on average. Our source code will be released upon paper publication.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.