Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Parameter Estimation and Inference in a Continuous Piecewise Linear Regression Model (2503.06303v1)

Published 8 Mar 2025 in stat.ME

Abstract: The estimation of regression parameters in one dimensional broken stick models is a research area of statistics with an extensive literature. We are interested in extending such models by aiming to recover two or more intersecting (hyper)planes in multiple dimensions. In contrast to approaches aiming to recover a given number of piecewise linear components using either a grid search or local smoothing around the change points, we show how to use Nesterov smoothing to obtain a smooth and everywhere differentiable approximation to a piecewise linear regression model with a uniform error bound. The parameters of the smoothed approximation are then efficiently found by minimizing a least squares objective function using a quasi-Newton algorithm. Our main contribution is threefold: We show that the estimates of the Nesterov smoothed approximation of the broken plane model are also $\sqrt{n}$ consistent and asymptotically normal, where $n$ is the number of data points on the two planes. Moreover, we show that as the degree of smoothing goes to zero, the smoothed estimates converge to the unsmoothed estimates and present an algorithm to perform parameter estimation. We conclude by presenting simulation results on simulated data together with some guidance on suitable parameter choices for practical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: