Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning conformational ensembles of proteins based on backbone geometry (2503.05738v1)

Published 19 Feb 2025 in q-bio.BM, cond-mat.stat-mech, cs.LG, and physics.comp-ph

Abstract: Deep generative models have recently been proposed for sampling protein conformations from the Boltzmann distribution, as an alternative to often prohibitively expensive Molecular Dynamics simulations. However, current state-of-the-art approaches rely on fine-tuning pre-trained folding models and evolutionary sequence information, limiting their applicability and efficiency, and introducing potential biases. In this work, we propose a flow matching model for sampling protein conformations based solely on backbone geometry. We introduce a geometric encoding of the backbone equilibrium structure as input and propose to condition not only the flow but also the prior distribution on the respective equilibrium structure, eliminating the need for evolutionary information. The resulting model is orders of magnitudes faster than current state-of-the-art approaches at comparable accuracy and can be trained from scratch in a few GPU days. In our experiments, we demonstrate that the proposed model achieves competitive performance with reduced inference time, across not only an established benchmark of naturally occurring proteins but also de novo proteins, for which evolutionary information is scarce.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.