Papers
Topics
Authors
Recent
2000 character limit reached

What Are They Filtering Out? A Survey of Filtering Strategies for Harm Reduction in Pretraining Datasets (2503.05721v1)

Published 17 Feb 2025 in cs.CL

Abstract: Data filtering strategies are a crucial component to develop safe LLMs (LLM), since they support the removal of harmful contents from pretraining datasets. There is a lack of research on the actual impact of these strategies on vulnerable groups to discrimination, though, and their effectiveness has not been yet systematically addressed. In this paper we present a benchmark study of data filtering strategies for harm reduction aimed at providing a systematic overview on these approaches. We survey 55 technical reports of English LMs and LLMs to identify the existing filtering strategies in literature and implement an experimental setting to test their impact against vulnerable groups. Our results show that the positive impact that strategies have in reducing harmful contents from documents has the side effect of increasing the underrepresentation of vulnerable groups to discrimination in datasets.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.