Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Free Your Hands: Lightweight Turntable-Based Object Capture Pipeline (2503.05511v5)

Published 7 Mar 2025 in cs.GR

Abstract: Novel view synthesis (NVS) from multiple captured photos of an object is a widely studied problem. Achieving high quality typically requires dense sampling of input views, which can lead to frustrating manual labor. Manually positioning cameras to maintain an optimal desired distribution can be difficult for humans, and if a good distribution is found, it is not easy to replicate. Additionally, the captured data can suffer from motion blur and defocus due to human error. In this paper, we use a lightweight object capture pipeline to reduce the manual workload and standardize the acquisition setup, with a consumer turntable to carry the object and a tripod to hold the camera. Of course, turntables and gantry systems have been frequently used to automatically capture dense samples under various views and lighting conditions; the key difference is that we use a turntable under natural environment lighting. This way, we can easily capture hundreds of valid images in several minutes without hands-on effort. However, in the object reference frame, the light conditions vary (rotate); this does not match the assumptions of standard NVS methods like 3D Gaussian splatting (3DGS). We design a neural radiance representation conditioned on light rotations, which addresses this issue and allows rendering with novel light rotations as an additional benefit. We further study the behavior of rotations and find optimal capturing strategies. We demonstrate our pipeline using 3DGS as the underlying framework, achieving higher quality and showcasing the method's potential for novel lighting and harmonization tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: