Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bridging the Semantic Gap in Virtual Machine Introspection and Forensic Memory Analysis (2503.05482v1)

Published 7 Mar 2025 in cs.CR and cs.LG

Abstract: Forensic Memory Analysis (FMA) and Virtual Machine Introspection (VMI) are critical tools for security in a virtualization-based approach. VMI and FMA involves using digital forensic methods to extract information from the system to identify and explain security incidents. A key challenge in both FMA and VMI is the "Semantic Gap", which is the difficulty of interpreting raw memory data without specialized tools and expertise. In this work, we investigate how a priori knowledge, metadata and engineered features can aid VMI and FMA, leveraging machine learning to automate information extraction and reduce the workload of forensic investigators. We choose OpenSSH as our use case to test different methods to extract high level structures. We also test our method on complete physical memory dumps to showcase the effectiveness of the engineered features. Our features range from basic statistical features to advanced graph-based representations using malloc headers and pointer translations. The training and testing are carried out on public datasets that we compare against already recognized baseline methods. We show that using metadata, we can improve the performance of the algorithm when there is very little training data and also quantify how having more data results in better generalization performance. The final contribution is an open dataset of physical memory dumps, totalling more than 1 TB of different memory state, software environments, main memory capacities and operating system versions. Our methods show that having more metadata boosts performance with all methods obtaining an F1-Score of over 80%. Our research underscores the possibility of using feature engineering and machine learning techniques to bridge the semantic gap.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube