Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Beginner's Textbook for Fully Homomorphic Encryption (2503.05136v12)

Published 7 Mar 2025 in cs.CR and cs.DM

Abstract: Fully Homomorphic Encryption (FHE) is a cryptographic scheme that enables computations to be performed directly on encrypted data, as if the data were in plaintext. After all computations are performed on the encrypted data, it can be decrypted to reveal the result. The decrypted value matches the result that would have been obtained if the same computations were applied to the plaintext data. FHE supports basic operations such as addition and multiplication on encrypted numbers. Using these fundamental operations, more complex computations can be constructed, including subtraction, division, logic gates (e.g., AND, OR, XOR, NAND, MUX), and even advanced mathematical functions such as ReLU, sigmoid, and trigonometric functions (e.g., sin, cos). These functions can be implemented either as exact formulas or as approximations, depending on the trade-off between computational efficiency and accuracy. FHE enables privacy-preserving machine learning by allowing a server to process the client's data in its encrypted form through an ML model. With FHE, the server learns neither the plaintext version of the input features nor the inference results. Only the client, using their secret key, can decrypt and access the results at the end of the service protocol. FHE can also be applied to confidential blockchain services, ensuring that sensitive data in smart contracts remains encrypted and confidential while maintaining the transparency and integrity of the execution process. Other applications of FHE include secure outsourcing of data analytics, encrypted database queries, privacy-preserving searches, efficient multi-party computation for digital signatures, and more. As this book is an open project (https://fhetextbook.github.io), we welcome FHE experts to join us as collaborators to help expand the draft.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 11 tweets and received 81 likes.

Upgrade to Pro to view all of the tweets about this paper:

HackerNews

Reddit Logo Streamline Icon: https://streamlinehq.com