Papers
Topics
Authors
Recent
2000 character limit reached

Partial Distribution Alignment via Adaptive Optimal Transport

Published 7 Mar 2025 in cs.LG | (2503.05087v1)

Abstract: To remedy the drawbacks of full-mass or fixed-mass constraints in classical optimal transport, we propose adaptive optimal transport which is distinctive from the classical optimal transport in its ability of adaptive-mass preserving. It aims to answer the mathematical problem of how to transport the probability mass adaptively between probability distributions, which is a fundamental topic in various areas of artificial intelligence. Adaptive optimal transport is able to transfer mass adaptively in the light of the intrinsic structure of the problem itself. The theoretical results shed light on the adaptive mechanism of mass transportation. Furthermore, we instantiate the adaptive optimal transport in machine learning application to align source and target distributions partially and adaptively by respecting the ubiquity of noises, outliers, and distribution shifts in the data. The experiment results on the domain adaptation benchmarks show that the proposed method significantly outperforms the state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.