Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dynamic-KGQA: A Scalable Framework for Generating Adaptive Question Answering Datasets (2503.05049v1)

Published 6 Mar 2025 in cs.CL, cs.IR, and cs.LG

Abstract: As question answering (QA) systems advance alongside the rapid evolution of foundation models, the need for robust, adaptable, and large-scale evaluation benchmarks becomes increasingly critical. Traditional QA benchmarks are often static and publicly available, making them susceptible to data contamination and memorization by LLMs. Consequently, static benchmarks may overestimate model generalization and hinder a reliable assessment of real-world performance. In this work, we introduce Dynamic-KGQA, a scalable framework for generating adaptive QA datasets from knowledge graphs (KGs), designed to mitigate memorization risks while maintaining statistical consistency across iterations. Unlike fixed benchmarks, Dynamic-KGQA generates a new dataset variant on every run while preserving the underlying distribution, enabling fair and reproducible evaluations. Furthermore, our framework provides fine-grained control over dataset characteristics, supporting domain-specific and topic-focused QA dataset generation. Additionally, Dynamic-KGQA produces compact, semantically coherent subgraphs that facilitate both training and evaluation of KGQA models, enhancing their ability to leverage structured knowledge effectively. To align with existing evaluation protocols, we also provide static large-scale train/test/validation splits, ensuring comparability with prior methods. By introducing a dynamic, customizable benchmarking paradigm, Dynamic-KGQA enables a more rigorous and adaptable evaluation of QA systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.