Papers
Topics
Authors
Recent
2000 character limit reached

Application of integrated gradients explainability to sociopsychological semantic markers (2503.04989v1)

Published 6 Mar 2025 in cs.CL

Abstract: Classification of textual data in terms of sentiment, or more nuanced sociopsychological markers (e.g., agency), is now a popular approach commonly applied at the sentence level. In this paper, we exploit the integrated gradient (IG) method to capture the classification output at the word level, revealing which words actually contribute to the classification process. This approach improves explainability and provides in-depth insights into the text. We focus on sociopsychological markers beyond sentiment and investigate how to effectively train IG in agency, one of the very few markers for which a verified deep learning classifier, BERTAgent, is currently available. Performance and system parameters are carefully tested, alternatives to the IG approach are evaluated, and the usefulness of the result is verified in a relevant application scenario. The method is also applied in a scenario where only a small labeled dataset is available, with the aim of exploiting IG to identify the salient words that contribute to building the different classes that relate to relevant sociopsychological markers. To achieve this, an uncommon training procedure that encourages overfitting is employed to enhance the distinctiveness of each class. The results are analyzed through the lens of social psychology, offering valuable insights.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.