Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Efficient Algorithms for Verifying Kruskal Rank in Sparse Linear Regression and Related Applications (2503.04986v1)

Published 6 Mar 2025 in cs.DS and cs.LG

Abstract: We present novel algorithmic techniques to efficiently verify the Kruskal rank of matrices that arise in sparse linear regression, tensor decomposition, and latent variable models. Our unified framework combines randomized hashing techniques with dynamic programming strategies, and is applicable in various settings, including binary fields, general finite fields, and integer matrices. In particular, our algorithms achieve a runtime of $\mathcal{O}\left(dk \cdot \left(nM\right){\lceil k / 2 \rceil}\right)$ while ensuring high-probability correctness. Our contributions include: A unified framework for verifying Kruskal rank across different algebraic settings; Rigorous runtime and high-probability guarantees that nearly match known lower bounds; Practical implications for identifiability in tensor decompositions and deep learning, particularly for the estimation of noise transition matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.