Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating Millions Of Lean Theorems With Proofs By Exploring State Transition Graphs (2503.04772v1)

Published 16 Feb 2025 in cs.LO and cs.AI

Abstract: LLMs have demonstrated significant potential in generating mathematical proofs. However, a persistent challenge is that LLMs occasionally make mistakes, while even a minor mistake can invalidate an entire proof. Proof assistants like Lean offer a great remedy. They are designed for verifying each step of a proof in a formal language, and in recent years researchers have created AI models to generate proofs in their languages. However, the scarcity of large-scale datasets of Lean proofs restrict the performance of such Automated Theorem Proving (ATP) models. We developed LeanNavigator, a novel method for generating a large-scale dataset of Lean theorems and proofs by finding new ways to prove existing Lean theorems. By leveraging an interactive Lean client and an efficient method for proof step generation, LeanNavigator efficiently produces new theorems with corresponding proofs. Applying this approach to Mathlib4, we generated 4.7 million theorems totaling 1 billion tokens, surpassing previous datasets by more than an order of magnitude. Using this extensive dataset, we trained an AI model that outperforms the state-of-the-art ReProver model in theorem-proving tasks. These results confirm our hypothesis and demonstrate the critical role of large datasets in improving the performance of automated theorem provers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 104 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube