Research on a Driver's Perceived Risk Prediction Model Considering Traffic Scene Interaction (2503.04516v1)
Abstract: In the field of conditional autonomous driving technology, driver perceived risk prediction plays a crucial role in reducing traffic risks and ensuring passenger safety. This study introduces an innovative perceived risk prediction model for human-machine interaction in intelligent driving systems. The model aims to enhance prediction accuracy and, thereby, ensure passenger safety. Through a comprehensive analysis of risk impact mechanisms, we identify three key categories of factors, both subjective and objective, influencing perceived risk: driver's personal characteristics, ego-vehicle motion, and surrounding environment characteristics. We then propose a deep-learning-based risk prediction network that uses the first two categories of factors as inputs. The network captures the interactive relationships among traffic participants in dynamic driving scenarios. Additionally, we design a personalized modeling strategy that incorporates driver-specific traits to improve prediction accuracy. To ensure high-quality training data, we conducted a rigorous video rating experiment. Experimental results show that the proposed network achieves a 10.0% performance improvement over state-of-the-art methods. These findings suggest that the proposed network has significant potential to enhance the safety of conditional autonomous driving systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.