Tensor Network Techniques for Quantum Computation (2503.04423v1)
Abstract: This book serves as an introductory yet thorough guide to tensor networks and their applications in quantum computation and quantum information, designed for advanced undergraduate and graduate-level readers. In Part I, foundational topics are covered, including tensor structures and network representations like Matrix Product States (MPS) and Tree Tensor Networks (TTN). These preliminaries provide readers with the core mathematical tools and concepts necessary for quantum physics and quantum computing applications, bridging the gap between multi-linear algebra and complex quantum systems. Part II explores practical applications of tensor networks in simulating quantum dynamics, with a particular focus on the efficiency they offer for systems of high computational complexity. Key topics include Hamiltonian dynamics, quantum annealing, open system dynamics, and optimization strategies using TN frameworks. A final chapter addresses the emerging role of "quantum magic" in tensor networks. It delves into non-stabilizer states and their contribution to quantum computational power beyond classical simulability, featuring methods such as stabilizer-enhanced MPS and the Clifford-dressed TDVP.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.