Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GaussianVideo: Efficient Video Representation and Compression by Gaussian Splatting (2503.04333v1)

Published 6 Mar 2025 in cs.CV

Abstract: Implicit Neural Representation for Videos (NeRV) has introduced a novel paradigm for video representation and compression, outperforming traditional codecs. As model size grows, however, slow encoding and decoding speed and high memory consumption hinder its application in practice. To address these limitations, we propose a new video representation and compression method based on 2D Gaussian Splatting to efficiently handle video data. Our proposed deformable 2D Gaussian Splatting dynamically adapts the transformation of 2D Gaussians at each frame, significantly reducing memory cost. Equipped with a multi-plane-based spatiotemporal encoder and a lightweight decoder, it predicts changes in color, coordinates, and shape of initialized Gaussians, given the time step. By leveraging temporal gradients, our model effectively captures temporal redundancy at negligible cost, significantly enhancing video representation efficiency. Our method reduces GPU memory usage by up to 78.4%, and significantly expedites video processing, achieving 5.5x faster training and 12.5x faster decoding compared to the state-of-the-art NeRV methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.