Materials Graph Library (MatGL), an open-source graph deep learning library for materials science and chemistry (2503.03837v1)
Abstract: Graph deep learning models, which incorporate a natural inductive bias for a collection of atoms, are of immense interest in materials science and chemistry. Here, we introduce the Materials Graph Library (MatGL), an open-source graph deep learning library for materials science and chemistry. Built on top of the popular Deep Graph Library (DGL) and Python Materials Genomics (Pymatgen) packages, our intention is for MatGL to be an extensible batteries-included'' library for the development of advanced graph deep learning models for materials property predictions and interatomic potentials. At present, MatGL has efficient implementations for both invariant and equivariant graph deep learning models, including the Materials 3-body Graph Network (M3GNet), MatErials Graph Network (MEGNet), Crystal Hamiltonian Graph Network (CHGNet), TensorNet and SO3Net architectures. MatGL also includes a variety of pre-trained universal interatomic potentials (akafoundational materials models (FMM)'') and property prediction models are also included for out-of-box usage, benchmarking and fine-tuning. Finally, MatGL includes support for Pytorch Lightning for rapid training of models.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.