Papers
Topics
Authors
Recent
2000 character limit reached

Deep Causal Behavioral Policy Learning: Applications to Healthcare

Published 5 Mar 2025 in stat.ML, cs.AI, and cs.LG | (2503.03724v1)

Abstract: We present a deep learning-based approach to studying dynamic clinical behavioral regimes in diverse non-randomized healthcare settings. Our proposed methodology - deep causal behavioral policy learning (DC-BPL) - uses deep learning algorithms to learn the distribution of high-dimensional clinical action paths, and identifies the causal link between these action paths and patient outcomes. Specifically, our approach: (1) identifies the causal effects of provider assignment on clinical outcomes; (2) learns the distribution of clinical actions a given provider would take given evolving patient information; (3) and combines these steps to identify the optimal provider for a given patient type and emulate that provider's care decisions. Underlying this strategy, we train a large clinical behavioral model (LCBM) on electronic health records data using a transformer architecture, and demonstrate its ability to estimate clinical behavioral policies. We propose a novel interpretation of a behavioral policy learned using the LCBM: that it is an efficient encoding of complex, often implicit, knowledge used to treat a patient. This allows us to learn a space of policies that are critical to a wide range of healthcare applications, in which the vast majority of clinical knowledge is acquired tacitly through years of practice and only a tiny fraction of information relevant to patient care is written down (e.g. in textbooks, studies or standardized guidelines).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.