Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Token-Level Privacy in Large Language Models (2503.03652v1)

Published 5 Mar 2025 in cs.CL and cs.CR

Abstract: The use of LLMs as remote services requires transmitting private information to external providers, raising significant privacy concerns. This process not only risks exposing sensitive data to untrusted service providers but also leaves it vulnerable to interception by eavesdroppers. Existing privacy-preserving methods for NLP interactions primarily rely on semantic similarity, overlooking the role of contextual information. In this work, we introduce dchi-stencil, a novel token-level privacy-preserving mechanism that integrates contextual and semantic information while ensuring strong privacy guarantees under the dchi differential privacy framework, achieving 2epsilon-dchi-privacy. By incorporating both semantic and contextual nuances, dchi-stencil achieves a robust balance between privacy and utility. We evaluate dchi-stencil using state-of-the-art LLMs and diverse datasets, achieving comparable and even better trade-off between utility and privacy compared to existing methods. This work highlights the potential of dchi-stencil to set a new standard for privacy-preserving NLP in modern, high-risk applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.