Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DO-IQS: Dynamics-Aware Offline Inverse Q-Learning for Optimal Stopping with Unknown Gain Functions (2503.03515v1)

Published 5 Mar 2025 in stat.ML and cs.LG

Abstract: We consider Inverse Optimal Stopping (IOS) problem where, based on stopped expert trajectories, one aims to recover the optimal stopping region through continuation and stopping gain functions approximation. The uniqueness of the stopping region allows the use of IOS in real-world applications with safety concerns. While current state-of-the-art inverse reinforcement learning methods recover both a Q-function and the corresponding optimal policy, they fail to account for specific challenges posed by optimal stopping problems. These include data sparsity near the stopping region, non-Markovian nature of the continuation gain, a proper treatment of boundary conditions, the need for a stable offline approach for risk-sensitive applications, and a lack of a quality evaluation metric. These challenges are addressed with the proposed Dynamics-Aware Offline Inverse Q-Learning for Optimal Stopping (DO-IQS), which incorporates temporal information by approximating the cumulative continuation gain together with the world dynamics and the Q-function without querying to the environment. Moreover, a confidence-based oversampling approach is proposed to treat the data sparsity problem. We demonstrate the performance of our models on real and artificial data including an optimal intervention for critical events problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube