Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation (2503.03327v3)

Published 5 Mar 2025 in eess.IV and cs.CV

Abstract: Melanoma is a malignant tumor that originates from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative analysis but remains a challenge due to blurred lesion boundaries, gradual color changes, and irregular shapes. To address this, we propose ScaleFusionNet, a hybrid model that integrates a Cross-Attention Transformer Module (CATM) and adaptive fusion block (AFB) to enhance feature extraction and fusion by capturing both local and global features. We introduce CATM, which utilizes Swin transformer blocks and Cross Attention Fusion (CAF) to adaptively refine feature fusion and reduce semantic gaps in the encoder-decoder to improve segmentation accuracy. Additionally, the AFB uses Swin Transformer-based attention and deformable convolution-based adaptive feature extraction to help the model gather local and global contextual information through parallel pathways. This enhancement refines the lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94\% and 91.80\% on the ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Simultaneously, independent validation experiments were conducted on the PH$2$ dataset using the pretrained model weights. The results show that ScaleFusionNet demonstrates significant performance improvements compared with other state-of-the-art methods. Our code implementation is publicly available at GitHub.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: