Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exploring Neural Ordinary Differential Equations as Interpretable Healthcare classifiers (2503.03129v1)

Published 5 Mar 2025 in cs.LG and cs.AI

Abstract: Deep Learning has emerged as one of the most significant innovations in machine learning. However, a notable limitation of this field lies in the ``black box" decision-making processes, which have led to skepticism within groups like healthcare and scientific communities regarding its applicability. In response, this study introduces a interpretable approach using Neural Ordinary Differential Equations (NODEs), a category of neural network models that exploit the dynamics of differential equations for representation learning. Leveraging their foundation in differential equations, we illustrate the capability of these models to continuously process textual data, marking the first such model of its kind, and thereby proposing a promising direction for future research in this domain. The primary objective of this research is to propose a novel architecture for groups like healthcare that require the predictive capabilities of deep learning while emphasizing the importance of model transparency demonstrated in NODEs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.