Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Leveraging Randomness in Model and Data Partitioning for Privacy Amplification (2503.03043v2)

Published 4 Mar 2025 in cs.LG and cs.CR

Abstract: We study how inherent randomness in the training process -- where each sample (or client in federated learning) contributes only to a randomly selected portion of training -- can be leveraged for privacy amplification. This includes (1) data partitioning, where a sample participates in only a subset of training iterations, and (2) model partitioning, where a sample updates only a subset of the model parameters. We apply our framework to model parallelism in federated learning, where each client updates a randomly selected subnetwork to reduce memory and computational overhead, and show that existing methods, e.g. model splitting or dropout, provide a significant privacy amplification gain not captured by previous privacy analysis techniques. Additionally, we introduce Balanced Iteration Subsampling, a new data partitioning method where each sample (or client) participates in a fixed number of training iterations. We show that this method yields stronger privacy amplification than Poisson (i.i.d.) sampling of data (or clients). Our results demonstrate that randomness in the training process, which is structured rather than i.i.d. and interacts with data in complex ways, can be systematically leveraged for significant privacy amplification.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube